Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mar Pollut Bull ; 196: 115610, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804672

RESUMO

Application of oil toxicity modelling for assessing the risk of spills to coral reefs remains uncertain due to a lack of data for key tropical species and environmental conditions. In this study, larvae of the coral Acropora millepora were exposed to six aromatic hydrocarbons individually to generate critical target lipid body burdens (CTLBBs). Larval metamorphosis was inhibited by all six aromatic hydrocarbons, while larval survival was only affected at concentrations >2000 µg L-1. The derived metamorphosis CTLBB of 9.7 µmol g-1 octanol indicates larvae are more sensitive than adult corals, and places A. millepora larvae among the most sensitive organisms in the target lipid model (TLM) databases. Larvae were also more sensitive to anthracene and pyrene when co-exposed to ecologically relevant levels of ultraviolet radiation. The results suggest that the application of the phototoxic TLM would be protective of A. millepora larvae, provided adequate chemical and light data are available.


Assuntos
Antozoários , Hidrocarbonetos Aromáticos , Hidrozoários , Animais , Larva , Raios Ultravioleta , Recifes de Corais , Hidrocarbonetos Aromáticos/farmacologia , Lipídeos/farmacologia
3.
Molecules ; 27(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335145

RESUMO

Flavonoids are polyphenols with broad known pharmacological properties. A series of 2,3-dihydroflavanone derivatives were thus synthesized and investigated for their anti-inflammatory activities. The target flavanones were prepared through cyclization of 2'-hydroxychalcone derivatives, the later obtained by Claisen-Schmidt condensation. Since nitric oxide (NO) represents an important inflammatory mediator, the effects of various flavanones on the NO production in the LPS-induced RAW 264.7 macrophage were assessed in vitro using the Griess test. The most active compounds were flavanone (4G), 2'-carboxy-5,7-dimethoxy-flavanone (4F), 4'-bromo-5,7-dimethoxy-flavanone (4D), and 2'-carboxyflavanone (4J), with IC50 values of 0.603, 0.906, 1.030, and 1.830 µg/mL, respectively. In comparison, pinocembrin achieved an IC50 value of 203.60 µg/mL. Thus, the derivatives synthesized in this work had a higher NO inhibition capacity compared to pinocembrin, demonstrating the importance of pharmacomodulation to improve the biological potential of natural molecules. SARs suggested that the use of a carboxyl-group in the meta-position of the B-ring increases biological activity, whereas compounds carrying halogen substituents in the para-position were less active. The addition of methoxy-groups in the meta-position of the A-ring somewhat decreased the activity. This study successfully identified new bioactive flavanones as promising candidates for the development of new anti-inflammatory agents.


Assuntos
Flavanonas , Anti-Inflamatórios/farmacologia , Flavanonas/farmacologia , Macrófagos , Óxido Nítrico
4.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802876

RESUMO

Photooxygenation reactions involving singlet oxygen (1O2) are utilized industrially as a mild and sustainable access to oxygenated products. Due to the usage of organic dyes as photosensitizers, these transformations can be successfully conducted using natural sunlight. Modern solar chemical reactors enable outdoor operations on the demonstration (multigram) to technical (multikilogram) scales and have subsequently been employed for the manufacturing of fine chemicals such as fragrances or biologically active compounds. This review will highlight examples of solar photooxygenations for the manufacturing of industrially relevant target compounds and will discuss current challenges and opportunities of this sustainable methodology.

5.
Sci Total Environ ; 720: 137486, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325569

RESUMO

Oil pollution remains a significant local threat to shallow tropical coral reef environments, but the environmental conditions typical of coral reefs are rarely considered in oil toxicity testing and risk assessments. Here we review the effects of three environmental co-factors on petroleum oil toxicity towards coral reef organisms, and show that the impacts of oil pollution on coral reef taxa can be exacerbated by environmental conditions commonly encountered in tropical reef environments. Shallow reefs are routinely exposed to high levels of ultraviolet radiation (UVR), which can substantially increase the toxicity of some oil components through phototoxicity. Exposure to UVR represents the most likely and harmful environmental co-factor reviewed here, leading to an average toxicity increase of 7.2-fold across all tests reviewed. The clear relevance of UVR co-exposure and its strong influence on tropical reef oil toxicity highlights the need to account for UVR as a standard practice in future oil toxicity studies. Indeed, quantifying the influence of UVR on toxic thresholds of oil to coral reef species is essential to develop credible oil spill risk models required for oil extraction developments, shipping management and spill responses in the tropics. The few studies available indicate that co-exposure to elevated temperature and low pH, both within the range of current daily and seasonal fluctuations and/or projected under continued climate change, can increase oil toxicity on average by 3.0- and 1.3-fold, respectively. While all three of the reviewed environmental co-factors have the potential to substantially increase the impacts of oil pollution in shallow reef environments, their simultaneous effects have not been investigated. Assessments of the combined effects of oil pollution, UVR, temperature and low pH will become increasingly important to identify realistic hazard thresholds suitable for future risk assessments over the coming century.


Assuntos
Raios Ultravioleta , Animais , Antozoários , Mudança Climática , Recifes de Corais , Petróleo , Poluição por Petróleo
6.
Molecules ; 24(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835663

RESUMO

An effective multi-step continuous flow approach towards N-diaminoalkylated 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones, including the local anesthetic compound AL-12, has been realized. Compared to the traditional decoupled batch processes, the combined photochemical-thermal-thermal flow setup rapidly provides the desired target compounds in superior yields and significantly shorter reaction times.


Assuntos
Isoindóis/síntese química , Descarboxilação , Isoindóis/química , Estrutura Molecular , Fotoquímica , Termodinâmica
7.
J Environ Manage ; 219: 189-207, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29747102

RESUMO

Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO2-mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Oxirredução , Águas Residuárias , Água
8.
Sci Rep ; 7: 45599, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358138

RESUMO

Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC70BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV-A and UV-B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV-C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment.

9.
Beilstein J Org Chem ; 13: 2833-2841, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29564011

RESUMO

The synthesis of various 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones was realized following a simple three-step process. The protocol utilized the photodecarboxylative addition of readily available carboxylates to N-(bromoalkyl)phthalimides as a versatile and efficient key step. The initially obtained hydroxyphthalimidines were readily converted to the desired N-diaminoalkylated 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones via acid-catalyzed dehydration and subsequent nucleophilic substitution with the corresponding secondary amines. The procedure was successfully applied to the synthesis of known local anesthetics (AL-12, AL-12B and AL-5) in their neutral forms.

10.
Org Biomol Chem ; 14(31): 7392-442, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27381273

RESUMO

Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.

11.
Chem Rev ; 116(17): 9664-82, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27181285

RESUMO

Natural sunlight offers a cost-efficient and sustainable energy source for photochemical reactions. In contrast to the lengthy and small-scale "flask in the sun" procedures of the past, modern solar concentrator systems nowadays significantly shorten reaction times and enable technical-scale operations. After a brief historical introduction, this review presents the most important solar reactor types and their successful application in preparative solar syntheses. The examples demonstrate that solar manufacturing of fine chemicals is technically feasible and environmentally sustainable. After over 100 years, Ciamician's prophetic vision of "the photochemistry of the future" as a clean and green manufacturing methodology has yet to be realized. At the same time, his warning "for nature is not in a hurry but mankind is" is still valid today. It is hoped that this review will lead to a renewed interest in this truly enlightening technology, that it will stimulate photochemists and photochemical engineers to "go back to the roots onto the roofs" and that it will ultimately result in industrial applications in the foreseeable future.

12.
Environ Sci Pollut Res Int ; 23(17): 17437-48, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27230148

RESUMO

Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.


Assuntos
Diclofenaco/química , Naproxeno/química , Fotólise , Titânio/química , Anti-Inflamatórios não Esteroides/química , Catálise , Cromatografia Líquida , Cinética , Espectrometria de Massas , Luz Solar , Água/química , Poluentes Químicos da Água/química
13.
Chemosphere ; 139: 579-88, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26340372

RESUMO

The TiO2 photocatalytic degradation of the active pharmaceutical ingredient (API) naproxen (NPX) has been studied using a laboratory-scale photoreactor equipped with a medium pressure mercury lamp. UV/TiO2 photocatalysis proved highly efficient in the elimination of NPX from a variety of water matrices, including distilled water, unfiltered river water and drinking water, although the rate of reaction was not always proportional to TiO2 concentration. However, the NPX degradation rate, which follows first-order kinetics, was appreciably reduced in river water spiked with phosphate and chloride ions, a dual anion system. Addition of chloride into drinking water enhanced the TiO2-photocatalysed degradation rate. Competitive degradation studies also revealed that the NPX degradation was greatly reduced in the presence of increased concentrations of another API, diclofenac (DCF). This was established by (i) the extent of mineralization, as determined by dissolved organic carbon (DOC) content, and (ii) the formation of intermediate NPX by-products, identified using liquid chromatography and electrospray ionization (positive and negative mode) mass spectrometry techniques. This study demonstrates that competition for active sites (anions or DCF) and formation of multiple photoproducts resulting from synergistic interactions (between both APIs) are key to the TiO2-photocatalysed NPX degradation.


Assuntos
Diclofenaco/química , Naproxeno/química , Processos Fotoquímicos , Titânio/química , Poluentes Químicos da Água/química , Água/química , Catálise , Cromatografia Líquida , Cinética
14.
Environ Sci Pollut Res Int ; 22(3): 2219-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25173973

RESUMO

Nanostructured titania supported on activated carbon (AC), termed as integrated photocatalytic adsorbents (IPCAs), were prepared by ultrasonication and investigated for the photocatalytic degradation of acetaminophen (AMP), a common analgesic and antipyretic drug. The IPCAs showed high affinity towards AMP (in dark adsorption studies), with the amount adsorbed proportional to the TiO2 content; the highest adsorption was at 10 wt% TiO2. Equilibrium isotherm studies showed that the adsorption followed the Langmuir model, indicating the dependence of the reaction on an initial adsorption step, with maximum adsorption capacity of 28.4 mg/g for 10 % TiO2 IPCA. The effects of initial pH, catalyst amount and initial AMP concentration on the photocatalytic degradation rates were studied. Generally, the AMP photodegradation activity of the IPCAs was better than that of bare TiO2. Kinetic studies on the photocatalytic degradation of AMP under UV suggest that the degradation followed Langmuir-Hinshelwood (L-H) kinetics, with an adsorption rate constant (K) that was considerably higher than the photocatalytic rate constant (k r), indicating that the photocatalysis of AMP is the rate-determining step during the adsorption/photocatalysis process.


Assuntos
Acetaminofen/química , Fotólise , Titânio/química , Poluentes Químicos da Água/química , Acetaminofen/efeitos da radiação , Adsorção , Catálise , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/efeitos da radiação
15.
Photochem Photobiol ; 90(2): 358-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24033260

RESUMO

Various photosensitizers were grafted by conventional peptide coupling methods to functionalized silica with several macroscopic shapes (powders, films) or embedded in highly transparent and microporous silica xerogel monoliths. Owing to the transparency and free-standing shape of the monoliths, the transient species arising from irradiation of the PSs could be analyzed and were not strikingly different from those observed in solutions. The observed reactivity for either liquid-solid (α-terpinene oxygenation vs dehydrogenation) or gas-solid (dimethylsulfide, DMS, solvent-free oxidation) reactions was consistent with the properties of the excited states of the PSs under consideration. Immobilized anthraquinone-derived materials preferentially react in both cases by electron transfer from the substrate to the triplet state of the sensitizer, in spite of an efficient singlet oxygen production. The recently developed 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid, DBTP-COOH, efficiently reacts via energy transfer to yield singlet oxygen from its triplet state. It was shown to perform better than 9,10-dicyanoanthracene and rose bengal for DMS oxidation and α-terpinene photooxygenation to ascaridole, respectively. Thus, by a proper choice of the organic immobilized photocatalyst, it is possible to develop efficient and reusable materials, activated under visible light, for various applications and to tune the reaction pathway, opening the way to green oxidation processes.


Assuntos
Luz , Compostos Orgânicos/química , Fármacos Fotossensibilizantes/química , Monoterpenos Cicloexânicos , Microscopia Eletrônica de Transmissão , Monoterpenos/química , Oxirredução , Dióxido de Silício/química , Difração de Raios X
16.
Beilstein J Org Chem ; 9: 2015-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204412

RESUMO

[2 + 2]-Cycloadditions of cyclopentene and 2,3-dimethylbut-2-ene to furanone were investigated under continuous-flow conditions. Irradiations were conducted in a FEP-microcapillary module which was placed in a Rayonet chamber photoreactor equipped with low wattage UVC-lamps. Conversion rates and isolated yields were compared to analogue batch reactions in a quartz test tube. In all cases examined, the microcapillary reactor furnished faster conversions and improved product qualities.

17.
Artigo em Inglês | MEDLINE | ID: mdl-23668403

RESUMO

A comprehensive profile on Butyl methoxy dibenzoylmethane, one of the most commonly used ultraviolet (UV) filters in topical sunscreen products, is prepared. This UV filter, often referred to as Avobenzone, has its main absorbance in the UVA I region of the spectrum and is susceptible to photodegradation. The profile contains the following sections: general information, use and mechanism of action, method of preparation, physical characteristics, methods of analysis, stability, and toxicity. The physical characteristics section includes the melting range, differential scanning calorimetry, partition coefficient, ionization constant, solubility, and UV, infrared, nuclear magnetic resonance ((1)H NMR and (13)C NMR) and mass spectrometry and X-ray powder diffractometry. The method of analysis section in addition to compendial identification and purity and assay methods includes thin-layer gas and high-performance liquid chromatography. The photostability and photostabilization of Butyl methoxy dibenzoylmethane, in addition to its toxicity, are also documented.


Assuntos
Alcanos/química , Chalconas/química , Protetores Solares/química , Alcanos/análise , Alcanos/farmacologia , Alcanos/toxicidade , Animais , Chalconas/análise , Chalconas/farmacologia , Chalconas/toxicidade , Estabilidade de Medicamentos , Humanos , Propiofenonas , Análise Espectral
18.
Org Lett ; 14(17): 4342-5, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22905680

RESUMO

A novel, multimicrocapillary flow reactor (MµCFR) was constructed and applied to a series of sensitized photoadditions involving 2(5H)-furanones. The reactor allowed for rapid and energy-, time-, and space-efficient sensitizer screening, process optimization, validation, scale-up, and library synthesis.


Assuntos
Furanos/química , Furanos/síntese química , Técnicas de Química Combinatória , Estrutura Molecular , Processos Fotoquímicos
19.
Molecules ; 16(9): 7522-50, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21894087

RESUMO

This review summarizes recent advances in microflow photochemical technologies and transformations. The portfolio of reactions comprises homogeneous and heterogeneous types, among them photoadditions, photorearrangements, photoreductions, photodecarboxylations, photooxygenations and photochlorinations. While microflow photochemistry is most commonly employed as a micro-scale synthesis tool, scale-up and technical production processes have already been developed.


Assuntos
Microquímica , Microfluídica/instrumentação , Processos Fotoquímicos , Catálise , Química Verde , Microquímica/instrumentação , Microquímica/métodos , Microfluídica/métodos , Oxirredução , Raios Ultravioleta
20.
Beilstein J Org Chem ; 7: 1055-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915208

RESUMO

A series of 4,4'-dimethoxybenzophenone mediated intra- and intermolecular photodecarboxylation reactions involving phthalimides have been examined under microflow conditions. Conversion rates, isolated yields and chemoselectivities were compared to analogous reactions in a batch photoreactor. In all cases investigated, the microreactions gave superior results thus proving the superiority of microphotochemistry over conventional technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...